Non-Iterative Partitioned Methods for Uncoupling Evolutionary Groundwater–Surface Water Flows
نویسندگان
چکیده
منابع مشابه
Non-Iterative Partitioned Methods for Uncoupling Evolutionary Groundwater–Surface Water Flows
We present an overview of a modern, efficient approach for uncoupling groundwater–surface water flows governed by the fully evolutionary Stokes–Darcy equations. Referred to as non-iterative partitioned methods, these algorithms treat the coupling terms explicitly and at each time level require only one Stokes and one Darcy sub-physics solve, thus taking advantage of existing solvers optimized f...
متن کاملAnalysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows
The most effective simulations of the multi-physics coupling of groundwater to surface water must involve employing the best groundwater codes and the best surface water codes. Partitioned methods, which solve the coupled problem by successively solving the sub-physics problems, have recently been studied for the Stokes-Darcy coupling with convergence established over bounded time intervals (wi...
متن کاملProjected non-stationary simultaneous iterative methods
In this paper, we study Projected non-stationary Simultaneous It-erative Reconstruction Techniques (P-SIRT). Based on algorithmic op-erators, convergence result are adjusted with Opial’s Theorem. The advantages of P-SIRT are demonstrated on examples taken from to-mographic imaging.
متن کاملUncoupling Evolutionary Groundwater-surface Water Flows Using the Crank-nicolson Leapfrog Method
Abstract. Consider an incompressible fluid in a region Ωf flowing both ways across an interface, I, into a porous media domain Ωp saturated with the same fluid. The physical processes in each domain have been well studied and are described by the Stokes equations in the fluid region and the Darcy equations in the porous media region. Taking the interfacial conditions into account produces a sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluids
سال: 2017
ISSN: 2311-5521
DOI: 10.3390/fluids2030047